Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 57316

B.E/B.Tech. DEGREE EXAMINATION, MAY/ JUNE 2016

Fourth Semester

Electrical and Electronics Engineering

EE 6401- ELECTRICAL MACHINES-I

(Regulation 2013)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions

PART-A (10*2 = 20 Marks)

- 1. State Ampere's Law.
- 2. Define Leakage Flux
- 3. Define all day efficiency of a transformer.
- 4. What is Inrush current in a transformer?
- 5. Define Co-energy.
- 6. What is meant by winding inductance?
- 7. Compare wave and Lap windings.
- 8. Draw various characteristics of D.C generator
- 9. Draw speed-torque characteristics of D.C series motor.
- 10. What is meant by plugging?

PART-B (5*16= 80 Marks)

11. a) Summarize the properties of magnetic materials (16)

(Or)

b) Explain the hysteresis and eddy current losses and obtain its expression. (16)

12.	a)	Discuss in brief about the OC and SC test of a single phase transformer. Develor approximate equivalent circuit for a single phase transformer	op an (16)
		(Or)	
	b)	Explain the various three phase transformer connections and parallel operation of the phase transformer	ree (16)
13.	a)	Obtain the expression for energy in a attracted armature relay magnetic systems.	(16)
		(Or)	
	b)	With an example explain the multiple-excited magnetic field system.	(16)
14.	a)	Explain the armature reaction in D.C machine.	(16)
		(Or)	
	b)	(i) Obtain EMF equation of D.C generator.	(8)
		(ii) A 4 pole dc motor is lap wound with 400 conductors. The pole-shoe is 20 cm long the average flux density over one-pole-pitch is 0.4 T, the armature diameter being cm. find the torque and gross-mechanical power developed when the motor is dra 25 A and running at 1500 rpm.	ng 30
15.	a)	The no-load test of a 44.76 KW, 220 V D.C shunt motor gave the following figures.	
		Input current= 13.25 A, field current = 2.55 A, resistance of the armature at 75° C= 0.0 and brush drop = 2 V. estimate the full-load current and efficiency	32Ω (16)
		(Or)	
	b)	Explain the method to obtain efficiency at full load by conducting Hopkinson's test	(16)