110103	出田		HH!	nki.		1221
	H	HIR	Ш	ш	Ш	Ш
			***		•	

Reg. No. :					

uestion Paper Code: 90338

GREE EXAMINATIONS, NOVEMBER/DECEMBER 2019
Third Semester
Civil Engineering

MA 8353 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to Aeronautical Engineering/Aerospace Engineering/Agriculture
Engineering/Automobile Engineering/Electrical and Electronics Engineering/
Electronics and Instrumentation Engineering/Industrial Engineering/Industrial
Engineering and Management/Instrumentation and Control Engineering/
Manufacturing Engineering/Marine Engineering/Material Science and
Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/
Mechanical and Automation Engineering/Mechatronics Engineering/Production
Engineering/Robotics and Automation Engineering/Bio Technology/Chemical and
Electrochemical Engineering/Food Technology/Pharmaceutical Technology)
(Regulations 2017)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions.

PART - A are

(10×2=20 Marks)

- 1. Find the complete solution of p = 2qx.
- 2. Solve $(D^2 6DD' + 9D'^2)$ z = 0.
- 3. State the Dirichlet's conditions.
- 4. Sketch the even extension of the function $f(x) = \sin x$, $0 < x < \pi$.
- 5. Classify the two-dimensional steady state heat conduction equation.
- Give the mathematical formulation of the problem of one-dimensional heat conduction in a rod of length l with insulated ends and with initial temperature f(x).
- 7. State the convolution theorem for Fourier Transforms.

https://www.onlineanna.com

1881 ISB HAR BU HAR IN 1881 III

90338

(8)

- 8. Show that $\Im_{c}[f(x)\cos ax] = \frac{1}{2}\{F_{c}(s+a) + F_{c}(s-a)\}$ where $\Im_{c}[f(x)] = F_{c}(s)$ is the Fourier cosine transform of f(x).
- 9. Show that $Z[a^n f(n)] = F(\frac{z}{a})$ where Z[f(n)] = F(z) is the Z-transform of f(x).
- 10. State the initial and final value theorems of Z-transforms.

(5×16=80 Marks)

(10)

(10)

(6)

(10)

(6)

(8)

- 11. a) i) Solve $(D^3 2D^2 D') z = \sin(x + 2y) + 3x^2 y$.
 - ii) Form the partial differential equation by eliminating the arbitrary functions from u = f (x + ct) + g (x ct).

(OR)

b) i) Solve $(x^2 - yz) p + (y^2 - zx) q = (z^2 - xy)$.

ii) Solve $p - x^2 = q + y^2$. (6)

12. a) i) Find the Fourier series of $f(x) = x^2$ in (0, 2l). Hence deduce that

 $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \infty = \frac{\pi^2}{6}$ (10)

ii) Find the complex form of the Fourier series of $f(x) = \cos ax$ in $(-\pi, \pi)$, where a is neither zero nor an integer.

(OR)

b) i) Obtain the constant term and the first three harmonics in the Fourier Cosine series of y = f (x) in (0, 6) from the following table.

x 0 1 2 3 4 5 y 4 8 15 7 6 2

- ii) Find the Fourier series expansion of $f(x) = \sin ax$ in (-l, l).
- 13. a) i) Solve $u_t = a^2 u_{xx}$ by the method of separation of variables and obtain all possible solutions.
 - ii) A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered as an infinite plate.

If the temperature along the short edge y=0 is $u(x,0)=100\sin\left(\frac{\pi x}{8}\right)$, 0 < x < 8 while two long edges x=0 & x=8 as well as the other short edge are kept at 0°C, then find the steady state temperature at any point of the plate.

(OR)

b) i) Solve the problem of a tightly stretched string with fixed end points x = 0 & x = 1 which is initially in the position y = f(x) and which is initially set vibrating by giving to each of its points a velocity $\frac{dy}{dt} = g(x)$ at t = 0. (10)

-3-

ii) Classify the partial differential equation

 $(1 - x^2) f_{xx} - 2xy f_{xy} + (1 - y^2) f_{yy} = 0.$ (6)

14. a) i) Find the Fourier transform of f(x) where f(x) = $\begin{cases} 1, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$ and hence evaluate $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$ (10)

ii) Show that $\frac{1}{\sqrt{x}}$ is self-reciprocal under the Fourier cosine transform. (6)

b) i) Find the Fourier cosine and sine transforms of e^{-ax}, a > 0 and hence deduce their inversion formulae.

ii) Using Parseval's identity, evaluate $\int_{a}^{\infty} \frac{dx}{(x^2 + a^2)^2} a > 0.$ (6)

15. a) i) Find Z (sin bt) and hence find Z (e-at sin bt).

ii) Find Z^{-1} $\left\{\frac{8z^2}{(2z-1)(4z+1)}\right\}$ using convolution theorem. (8)

b) i) Using Z-transforms, solve the difference equation $y_{n+2} - 7y_{n+1} + 12y_n = 2^n$ given $y_0 = y_1 = 0$. Use partial fraction method to find the inverse Z-transform.

Z-transform. (8) ii) Using residue method, find $Z^{-1}\left\{\frac{z}{z^2+2z+2}\right\}$. (8)