	 	 	 _		
Reg. No.:					

Question Paper Code: D 2308

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2010.

Seventh Semester

Mechanical Engineering

ME 1401 — INTRODUCTION OF FINITE ELEMENT ANALYSIS

(Common to Automobile Engineering and Mechatronics Engineering)

Time: Three hours

Maximum : 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- 1. What is the limitation of using a finite difference method?
- 2. List the various methods of solving boundary value problems.
- 3. Write down the interpolation function of a field variable for three-node triangular element.
- 4. Highlight at least two rules to guide the placement of the nodes when obtaining approximate solution to a differential equation.
- 5. List the properties of the global stiffness matrix.
- 6. List the characteristics of shape functions.
- 7. What do you mean by the terms : c^0 , c^1 and c^n continuity?
- 8. Write down the nodal displacement equations for a two dimensional triangular elasticity element.
- 9. List the required conditions for a problem assumed to be axisymmetric.
- 10. Name a few boundary conditions involved in any heat transfer analysis.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Discuss the following methods to solve the given differential equation:

$$EI\frac{d^2y}{dx^2} - M(x) = 0$$

with the boundary conditions y(0) = 0 and y(H) = 0

- (i) Variational method
- (ii) Collocation method.

Or

(b) For the spring system shown in Figure 1, calculate the global stiffness matrix, displacements of nodes 2 and 3, the reaction forces at node 1 and 4. Also calculate the forces in the spring 2. Assume, $k_1 = k_3 = 100 \text{ N/m}$, $k_2 = 200 \text{ N/m}$, $u_1 = u_4 = 0$ and P = 500 N.

Figure 1 Spring System Assembly

12. (a) Determine the joint displacements, the joint reactions, element forces and element stresses of the given truss elements.

Figure 2 Truss with applied load

Table 1: Element Property Data

L. Elen	terr r robe		_	
Α	\mathbf{E}	L		α Degree
$ m cm^2$	N/m^2	m	Connection	
32.2	6.9e10	2.54	2 to 3	90
38.7	20.7e10	2.54	2 to 1	0
25.8	20.7e10	3.59	1 to 3	135
	${ m A} \ { m cm}^2 \ { m 32.2} \ { m 38.7}$	A E cm ² N/m ² 32.2 6.9e10 38.7 20.7e10	$\begin{array}{cccc} & & & & \\ cm^2 & & N/m^2 & m \\ 32.2 & 6.9e10 & 2.54 \\ 38.7 & 20.7e10 & 2.54 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Or

Derive the interpolation function for the one dimensional linear element (b) with a length 'L' and two nodes, one at each end, designated as 'i' and 'j'. Assume the origin of the coordinate system is to the left of node 'i'.

Figure 3 the one-dimensional linear element

13. Determine three points on the 50°C contour line for the rectangular element shown in the Figure 4. The nodal values are $\Phi_i = 42^{\circ}\mathrm{C}$, $\Phi_j = 54^{\circ}\mathrm{C}$, $\Phi_k = 56^{\circ}\mathrm{C}$ and $\Phi_m = 46^{\circ}\mathrm{C}$.

Figure 4 Nodal coordinates of the rectangular element

Or

(b) The simply supported beam shown in Figure 5 is subjected to a uniform transverse load, as shown. Using two equal-length elements and workequivalent nodal loads obtain a finite element solution for the deflection at mid-span and compare it to the solution given by elementary beam

Figure 5 uniformly loaded beam

14. (a) For the plane strain element shown in the Figure 6, the nodal displacements are given as : $u_1 = 0.005 \, \mathrm{mm}, \ u_2 = 0.002 \, \mathrm{mm}, \ u_3 = 0.0 \, \mathrm{mm}, \ u_4 = 0.0 \, \mathrm{mm}, \ u_5 = 0.004 \, \mathrm{mm}, \ u_6 = 0.0 \, \mathrm{mm}.$ Determine the element stresses. Take E = 200 Gpa and $\gamma = 0.3$. Use unit thickness for plane strain.

Figure 6 Triangular Element

(b) Determine the element stiffness matrix and the thermal load vector for the plane stress element shown in Figure 7. The element experiences 20°C increase in temperature. Take E = 15e6 N/cm², $\gamma = 0.25$, t = 0.5 cm and a = 6e-6/°C.

Figure 7 Triangular elastic elements

15. (a) Use Gaussian quadrature to obtain an exact value of the integral.

$$I = \int_{-1-1}^{1} \int_{-1}^{1} (r^3 - 1)(s - 1)^2 dr ds.$$

Or

- (b) Define the following terms with suitable examples:
 - (i) Plane stress, Plane strain
 - (ii) Node, Element and Shape functions
 - (iii) Iso-parametric element
 - (iv) Axisymmetric analysis.