Question Paper Code: 31043

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Sixth Semester

Mechanical Engineering

080120032 — FINITE ELEMENT ANALYSIS

(Common to Automobile Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the advantages of Gaussian elimination technique.
- 2. What is Ritz method?
- 3. State the significance of shape function.
- 4. What is post processing? Give an example.
- 5. What is meant by primary and secondary node?
- 6. Distinguish between CST and LST elements.
- 7. Write the finite element equation used to analyse a two dimensional heat transfer problem.
- 8. State the applications of axisymmetric elements.
- 9. When are isoparameteric elements used?
- 10. What are force vectors? Give an example.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Discuss the importance of FEA in assisting design process. (6)
 - (ii) Solve the ordinary differential equation

$$\left(\frac{d^2y}{dx^2}\right) + 10x^2 = 0 \text{ for } 0 \le x \le 1$$

Subject to the boundry conditions y(0) = y(1) = 0 using the Galerkin method with the trial functions $N_0(x) = 0$; $N_1(x) = x(1-x^2)$. (10)

Or

- (b) (i) Discuss the factors to be considered in descretisation of a domain. (10)
 - (ii) Solve the following equations using the gauss elimination method. $2x_1 + 3x_2 + x_3 = 9$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$3x_1 + x_2 + 2x_3 = 0.$$
(6)

12. (a) Fig.1 shows the pin-jointed configuration. Determine the nodal displacements and stresses in each element. (16)

- (b) For the beam shown in Fig.2, determine
 - (i) The slopes at node 2 and 3 and
 - (ii) Vertical deflection at the mid-point of the distributed load. All the lements have E = 200 GPa and $I = 5 \times 10^6$ mm⁴. (16)

Fig. 2

13. (a) Compute the finite element equation for the LST element shown in Fig.3. (16)

Thickness = 2 mmE = 200 GPav = 0.3

Plane stress

Fig. 3

Or

(b) Determine the element matrices and vectors for the LST element shown in Fig.4.The nodal coordinates are i (1, 1), j (5, 2) and k (3, 5). Convection takes place along the edge jk.

 $K = 7.5 \text{ W/mm}^{\circ}\text{C}$ $h = 0.15 \text{ W/mm}^{2}^{\circ}\text{C}$ $T_{\infty} = 30^{\circ}\text{C}$

Fig. 4

14: (a) Triangular elements are used for the stress analysis of plate subjected to inplane loads. The (x, y) coordinates of nodes i, j and k of an element are given by (2, 3), (4, 1), and (4, 5) mm respectively. The nodal displacements are given as:

 $u_1 = 2.0 \text{ mm}, u_2 = 0.5 \text{ mm}, u_3 = 3.0 \text{ mm}$

 $v_1 = 1.0 \text{ mm}, v_2 = 0.0 \text{ mm}, v_3 = 0.5 \text{ mm}$

Determine element stresses. Let E = 160 GPa, Poisson's ratio = 0.25 and thickness of the element t = 10 mm. (16)

Or

- (b) (i) What are the non-zero strain and stress components of axisymmetric element? Explain. (4)
 - (ii) Derive the stiffness matrix of an axisymmetric element using potential approach. (12)
- 15. (a) (i) Consider the isoparametric quadrilateral element with nodes 1-4 at (5, 5), (11, 7), (12, 15), and (4, 10) respectively. Compute the Jacobian matrix and its determinant at the element centroid. (10)
 - (ii) Use Gaussian quadrature with two points to evaluate the integral

$$\int_{-1}^{1} \left(\cos x / \left(1 - x^{2}\right)\right) dx$$

The Gaussian points are \pm 0.5774 and weights at the two points are equal to unity. (6)

Or "

(b) The nodal displacements of a rectangular element having nodal coordinates (0, 0), (4, 0), (4, 2) and (0, 2) are : $u_1 = 0$ mm, $v_1 = 0$ mm, $u_2 = 0.1$ mm, $v_2 = 0.05$ mm, $u_3 = 0.05$ mm, $v_3 = -0.05$, $u_4 = 0$ and $v_4 = 0$ mm respectively. Determine the stress matrix at r = 0 and s = 0 using the isoparametric formulation. Take E = 210 GPa and Poisson's ratio = 0.25.