_			 				
Reg. No.				-			

Question Paper Code: 51648

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Sixth Semester

Mechanical Engineering

ME 2351/ME 64/10122 ME 602 – GAS DYNAMICS AND JET PROPULSION

(Regulation 2008/2010)

(Common to PTME 2351 – Gas Dynamics and Jet Propulsion for B.E. (Part-Time) Fifth Semester – Mechanical Engineering – Regulation 2009)

Time: Three hours Maximum: 100 marks

Use of Gas Tables is permitted.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Distinguish between nozzle and diffuser.
- 2. When does maximum flow occur for an isentropic flow with variable area duct?
- 3. Give assumptions made on Rayleigh flow.
- 4. Define critical condition in Fanno flow.
- 5. Why the efficiency of a machine, experiencing shock wave is considerably low?
- 6. What is the use of pitot tube in supersonic flow?
- 7. Define thrust power and propulsive efficiency of aircraft engine.
- 8. Why a ram jet engine does not require a compressor and turbine?
- 9. Why rocket is called as non breathing engine? Can rocket work at vacuum?
- 10. What is the use of inhibitors in solid propellants?

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Air flows down a variable area duct. Measurements indicate that the temperature is 278 K and the velocity is 150 m/s at a certain section of the duct. Measurements at a second section indicate that the temperature has decreased to 253 K. Assuming that the flow is adiabatic and one dimensional, find the velocity at this second section.
 - (ii) Typical cruising speeds and altitudes for three commercial aircraft are:

Dash 8: Cruising speed- 500 km/hr at an altitude of 4500m.

Boeing 747: Cruising speed: 978 km/hr at an altitude of 9500 m

Find the Mach number of the aircraft when flying at these cruise conditions. (10)

Or

- (b) Air flows through a nozzle which has inlet areas of 0.001 m². If the air has a velocity of 80 m/s, a temperature of 301 K and a pressure of 700 kPa at the inlet section and a pressure of 250 kpa at the exit, find the mass flow rate through the nozzle and assuming one-dimensional isentropic flow, the velocity at the exit section of the nozzle. (16)
- 12. (a) Air flows out of a pipe with a diameter of 0.3 m at a rate of 1000 m³/ min at a pressure and temperature of 150 kPa and 293 K respectively. If the pipe is 50m long, find assuming that f = 0.005, the Mach number at the exit, the inlet pressure and the inlet temperature. (16)

Or

- (b) The condition of a gas in a combustor at entry is: $p_1 = 0.343$ bar, $T_1 = 310$ K, $c_1 = 60$ m/sec. Determine the Mach number, pressure, temperature and velocity at the exit if the increase in stagnation enthalpy of the gas between entry and exit is 1172.5 kJ/kg. Take $c_p = 1.005$ kJ/kg K, $\gamma = 1.4$. (16)
- 13. (a) A normal shock occurs in the diverging section of a convergent divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic except through the shock. Determine:
 - (i) Mach numbers M_x and M_y
 - (ii) The static pressure and
 - (iii) The area of cross section of the nozzle at the section of nozzle where the normal shock occurs. (16)

Or

(b) A gas $(\gamma = 1.3)$ at $p_1 = 345$ mbar, $T_1 = 350$ K and $M_1 = 1.5$ is to be isentropically expanded to 138 mbar.

Determine

- (i) the deflection angle
- (ii) final Mach number
- (iii) the temperature of the gas.
- 14. (a) Derive the following relations for aircraft engine

(i) Flight to jet speed ratio
$$\sigma = 1 - \frac{F}{\dot{m}_a c_i}$$
 (6)

(ii) Thrust in a turbojet engine

$$F = \dot{m}_a(c_j - u) = \dot{m}_a(c_e - u) + (p_e - p_a)A_e.$$
 (10)

Or

- (b) An aircraft flies at 90 km/hr. One of its turbojet engines takes in 40 kg/s of air and expands the gases to the ambient pressure. The air-fuel ratio is 50 and the lower calorific value of the fuel is 43 MJ/kg. For maximum thrust power determine:
 - (i) jet velocity
 - (ii) thrust
 - (iii) specific thrust
 - (iv) thrust power
 - (v) propulsive, thermal and overall efficiencies.
- 15. (a) Explain the working principle of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines.

Or

- (b) Describe briefly the important applications of rocket propulsion in the following fields
 - (i) Aircrafts
 - (ii) Military
 - (iii) Space
 - (iv) scientific.