(b) As part of the investigation of the collapse of the roof of a building, a testing laboratory is given all the available bolts that connected the steel structure at 3 different positions on the roof. The forces required to shear each of these bolts (coded values) are as follows:

Position 1: 90 82 79 98 83 9

Position 2: 105 89 93 104 89 95 86

Position 3: 83 89 80 94

Perform an analysis of variance to test at the 0.05 level of significance whether the differences among the sample means at the 3 positions are significant. (16)

15. (a) The following data gives the average life in hours and range in hours of 12 samples each of 5 lamps. Construct \overline{X} —chart and R-chart, comment on state of control. (16)

Sample No:	1	2	3	4	5	6	7	8	9	10	11	12
\overline{X} :	120	127	152	157	160	134	137	123	140	144	120	127
R:	30	44	60	34	38	35	46	62	39	50	35	41

Or

(b) (i) The following data gives the number of defectives in 10 samples, each of size 100. Construct a np - chart for these data and also determine whether the process is in control.
 (8)

Sample Number :	1	2	3	4	5	6	7	8	9	10
Number of defectives :	24	38	62	34	26	36	38	52	33	44

(ii) Construct a control chart for fraction defectives (p-Chart) for the following data:

(8)

Sample Number :		2	3	4	5	6	7	8	9	10
Sample Size :		65	85	70	80	80	.70	95	90	75
Number of defectives :	9	7	3	2	9	5	3	9	6	7

			$\overline{}$	$\overline{}$				
Reg. No. :	!			l	1 !			1
Reg. No		l i		l				1

stion Paper Code: 80216

.. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third/Fourth Semester

Agriculture Engineering

MA 8391 - PROBABILITY AND STATISTICS

(Common to Industrial Engineering/
Industrial Engineering and Management/Food Technology/ Information Technology/
Pharmaceutical Technology/Biomedical Engineering/Environmental Engineering/
Manufacturing Engineering/ Mechanical Engineering (sandwich)/
Petrochemical Engineering/Bio Technology/Chemical Engineering/
Fashion Technology/Handloom and Textile Technology/
Petrochemical Technology/Petroleum Engineering/Plastic Technology/
Polymer Technology/Textile Chemistry/Textile Technology)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

Use of Statistical Tables is permitted.

Answer ALL questions.

PART A
$$\rightarrow$$
 (10 × 2 = 20 marks)

1. The probability density function of the random variable X is given by

$$f(x) = \begin{cases} k(1-x^2) & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$
. Find the value of k.

- 2. For a binomial distribution mean is 2 and variance is $\frac{4}{3}$, find the first term of the distribution.
- 3. Find the marginal density function of X if $f(x, y) = \begin{cases} 8xy & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$.
- 4. The two lines of regression are 3x + 2y 26 = 0, 6x + y 31 = 0. Find the value of correlation coefficient between x and y.
- Define type I and type II errors.

- 6. An oil company claims that less than 20 percent of all car owners have not tried its gasoline. Test this claim at the 0.01 level of significance if a random check reveals that 22 of 200 car owners have not tried the oil company's gasoline.
- 7. State the identity for sum of squares for one way of analysis of variance.
- 8. What is the Latin Square Design?
- A garment was sampled on 10 consecutive hours of production. The number of defects found per garment is given below:

Defects: 5, 1, 7, 0, 2, 3, 4, 0, 3, 2. Compute upper and lower control limits for monitoring number of defects.

Define tolerance limits.

PART B
$$-$$
 (5 × 16 = 80 marks)

- 11. (a) (i) Find the moment generating function of a Poisson distribution.

 Hence find mean and variance. (8)
 - (ii) Four boxes A, B, C, D contain fuses .The boxes contain 5000, 3000, 2000 and 1000 fuses respectively. The percentages of fuses in boxes which are defective are 3%, 2%, 1% and 0.5% respectively. One fuse is selected at random arbitrarily from one of the boxes. It is found to be defective fuse. Find the probability that it has come from box D.

Or

- (b) (i) Find mean, variance and moment generating function of Exponential distribution. Also prove the lack of memory property of the Exponential distribution. (10)
 - (ii) The distribution function of a random variable X is given by $F(x) = 1 (1 + x)e^{-x}$; $x \ge 0$. Find the density function, mean, variance of X.
- 12. (a) (i) X and Y are two random variables having the joint probability mass function f(x, y) = k(3x + 5y), x = 1, 2, 3: y = 0, 1, 2. Find the marginal distributions and conditional distribution of X, $P(X = x_i | Y = 2)$, $P(X \le 2 | Y \le 1)$. (8)
 - (ii) The joint density function of two random variables X and Y is given by $f(x, y) = \frac{1}{4}e^{-(x+y)/2}$, x > 0, y > 0. Find the distribution of $\frac{X-Y}{4}$. (8)

Or

2

80216

(b) The joint probability density function of two random variables X and Y is given by $f(x, y) = h(xy + y^2)$, $0 \le x \le 1$, $0 \le y \le 2$.

Find
$$P(Y > 1)$$
, $P(X > \frac{1}{2}, Y < 1)$ and $P(X + Y \le 1)$. (16)

 (a) Two random samples are drawn from normal populations are given below:

Sample 1:	17	27	18	25	27	29	13	17
Sample 2:	16	16	20	27	26	25	21	i

Can we conclude that the two samples are drawn from the same population? Test at 5% level of significance. (16)

Or

(b) (i) Fit a Poisson's distribution to the following data and test the goodness of fit. Test at 5% level of significance. (8)

x:	0	1	2	3	4	5
f:	142	156	69	27	5	1

- (ii) A drug manufacturer claims that the proportion of patients exhibiting side effects to their new arthritis drug is at least 8% lower than for the standard brand X. In a controlled experiment, 31 out of 100 patients receiving the new drug exhibited the side effects, as did 74 out of 150 patients receiving brand X. Test the manufacturer's claim at 5% level of significance.
- 14. (a) An experiment was performed to judge the effect of four different fuels and three different types of launchers on the range of a certain rocket. Test, on the basis of following ranges in miles, whether there is a significant effect due to differences in fuels and, whether there is a significant effect due to differences in launchers. Use the 0.01 level of significance.

	Fuel 1	Fuel 2	Fuel 3	Fuel 4
Launcher X	45	47	48	42
Launcher Y	43	46	50	37
Launcher Z	51	52	55	49

Or